Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases.

نویسندگان

  • Marlou Keller
  • Daniel Buchholz
  • Stefano Passerini
چکیده

Herein, the synthesis of new quaternary layered Na-based oxides of the type Na x Mn y Ni z Fe0.1Mg0.1O2 (0.67≤ x ≤ 1.0; 0.5≤ y ≤ 0.7; 0.1≤ z ≤ 0.3) is described. The synthesis can be tuned to obtain P2- and O3-type as well as mixed P-/O-type phases as demonstrated by structural, morphological, and electrochemical properties characterization. Although all materials show good electrochemical performance, the simultaneous presence of the P- and O-type phases is found to have a synergetic effect resulting in outstanding performance of the mixed phase material as a sodium-ion cathode. The mixed P3/P2/O3-type material, having an average elemental composition of Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2, overcomes the specific drawbacks associated with the P2- and O3-type materials, allowing the outstanding electrochemical performance. In detail, the mixed phase material is able to deliver specific discharge capacities of up to 155 mAh g-1 (18 mA g-1) in the potential range of 2.0-4.3 V. In the narrower potential range of 2.5-4.3 V the material exhibits high average discharge potential (3.4 V versus Na/Na+), exceptional average coulombic efficiencies (>99.9%), and extraordinary capacity retention (90.2% after 601 cycles). The unexplored class of P-/O-type mixed phases introduces new perspectives for the development of layered positive electrode materials and powerful Na-ion batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of NaCl on growth, yield and ion concentration of various Populus euphratica Oliv. ecotypes in Iran

      Euphrates poplar (Populus euphratica Oliv.) is a woody species that is naturally distributed in the desert areas of some parts of Asia and Africa. Because of its outstanding features, it is a model plant to study environmental stress tolerance. This research was conducted from 2014 to 2016 in order to study the relationship between performance indices and ion concentrations. The cuttings ...

متن کامل

O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries

a r t i c l e i n f o Sodium Na-ion battery We report a new layered Na(Mn 0.25 Fe 0.25 Co 0.25 Ni 0.25)O 2 compound with O3 oxygen stacking. It delivers 180 mAh/g initial discharge capacity and 578 Wh/kg specific energy density with good cycling capability at high cutoff voltage. In situ X-ray diffraction (XRD) shows a reversible structure evolution of O3-P3-O3′-O3″ upon Na de-intercalation. Th...

متن کامل

Determination and Modeling of Activity Coefficients of Sodium Chloride in (Glycerol + Water) Mixtures Based on Potentiometric Measurements

In this work, the results concerning to the mean activity coefficient measurements for NaCl in the (glycerol + water) system using the potentiometric method are reported. The potentiometric measurements were performed on the galvanic cells without liquid junction of the type: Ag|AgCl|NaCl (m), glycerol (wt%), H2O (1 - wt)%|Na-ISE, in various mixed solvent systems containing 0, 5, 10,...

متن کامل

Fast discharge process of layered cobalt oxides due to high Na+ diffusion

Sodium ion secondary battery (SIB) is a low-cost and ubiquitous secondary battery for next-generation large-scale energy storage. The diffusion process of large Na(+) (ionic radius is 1.12 Å), however, is considered to be slower than that of small Li(+) (0.76 Å). This would be a serious disadvantage of SIB as compared with the Lithium ion secondary battery (LIB). By means of the electrochemical...

متن کامل

Utilizing Co2+/Co3+ Redox Couple in P2‐Layered Na0.66Co0.22Mn0.44Ti0.34O2 Cathode for Sodium‐Ion Batteries

Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na0.66Co x Mn0.66-x Ti0.34O2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced energy materials

دوره 6 3  شماره 

صفحات  -

تاریخ انتشار 2016